Example \[{{\gamma }_{1}}=\frac{1}{2\pi }\arg ,\] (1.1) Fig. 1. some text \[\int_L dL\] Figure. 2 more text paragraph % \[\int_L dL\] 1 \[\int_L dL\] (1.2) paragraph 2 $eq$ (1.2) [1-2] and [2] Fig. 3 description see (Fig.1) for explanation ${{\gamma }_{1}}=\frac{1}{2\pi }\arg ,$ (1.2) \begin{table}[!h] \centering \caption{ ${{\bar{\sigma }}_{R\left( \upsilon \right)}}={{\varphi }_{9}}\left( lg{{{\bar{N}}}_{G\left( \upsilon \right)}} \right)$ is the regression equation of the function } \label{tab:1} \begin{tabular}{|c|c|c|c|c|c|} \hline № & ${{d}_{i}}$, mm & $\Delta {{h}_{i}}$, mm & ${{\bar{a}}_{\sigma i~~}}$ & Regression equation & ${{R}^{2}}$\\ \hline 1 & 7,5 & \multirow{4}{*}{0} & 1,00 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=290,19x-1442,00$ & 0,965\\ \cline{1-2} \cline{4-6} 2 & 10,0 & & 1,25 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=405,01x-2196,80$ & 0,977\\ \cline{1-2} \cline{4-6} 3 & 15,0 & & 1,75 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=366,12x-2017,60$ & 0,985\\ \cline{1-2} \cline{4-6} 4 & 20,0 & & 2,75 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=373,32x-2155,40$ & 0,958\\ \hline 5 & 7,5 & \multirow{4}{*}{0,05} & 1,00 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=-6049,10{{x}^{2}}+73903,00x-225290,00$ & 0,988\\ \cline{1-2} \cline{4-6} 6 & 10,0 & & 1,25 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=119,00x-377,80$ & 0,914\\ \cline{1-2} \cline{4-6} 7 & 15,0 & & 1,75 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=204,67x-936,46$ & 0,995\\ \cline{1-2} \cline{4-6} 8 & 20,0 & & 2,75 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=222,28x-1130,8$ & 0,986\\ \hline 9 & 7,5 & \multirow{4}{*}{0,10} & 1,00 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=188,86x-718,04$ & 0,974\\ \cline{1-2} \cline{4-6} 10 & 10,0 & & 1,25 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=95,86x-228,18$ & 0,986\\ \cline{1-2} \cline{4-6} 11 & 15,0 & & 1,75 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=286,24x-1412,60$ & 0,972\\ \cline{1-2} \cline{4-6} 12 & 20,0 & & 2,75 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=206,93x-1027,00$ & 0,950\\ \hline 13 & 7,5 & \multirow{4}{*}{0,15} & 1,00 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=127,64x-339,85$ & 0,998\\ \cline{1-2} \cline{4-6} 14 & 10,0 & & 1,25 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=218,61x-953,18$ & 0,986\\ \cline{1-2} \cline{4-6} 15 & 15,0 & & 1,75 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=219,71x-978,17$ & 0,979\\ \cline{1-2} \cline{4-6} 16 & 20,0 & & 2,75 & ${{\bar{\sigma }}_{R\left( \upsilon  \right)}}=181,96x-852,66$ & 0,992\\ \hline \end{tabular} \end{table} References 1. Galin L.A. Contact problems of the theory of elasticity and viscoelasticity.-M.: Nauka, 1980.- 304 p. (In Russian) 2. Shtaerman I.Ya. Contact problem of elasticity theory. - M.-L.: Gostekhteorizdat, 1947 - 270 p. (In Russian)