Example
\[{{\gamma }_{1}}=\frac{1}{2\pi }\arg ,\] (1.1)
Fig. 1. some text \[\int_L dL\]
Figure. 2 more text
paragraph % \[\int_L dL\] 1 \[\int_L dL\] (1.2)
paragraph 2 $eq$ (1.2) [1-2] and [2]
Fig. 3 description
see (Fig.1) for explanation
${{\gamma }_{1}}=\frac{1}{2\pi }\arg ,$ (1.2)
\begin{table}[!h]
\centering
\caption{
${{\bar{\sigma }}_{R\left( \upsilon \right)}}={{\varphi }_{9}}\left( lg{{{\bar{N}}}_{G\left( \upsilon \right)}} \right)$ is the regression equation of the function
}
\label{tab:1}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
№ & ${{d}_{i}}$, mm & $\Delta {{h}_{i}}$, mm & ${{\bar{a}}_{\sigma i~~}}$ & Regression equation & ${{R}^{2}}$\\
\hline
1 & 7,5 & \multirow{4}{*}{0} & 1,00 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=290,19x-1442,00$ & 0,965\\
\cline{1-2}
\cline{4-6}
2 & 10,0 & & 1,25 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=405,01x-2196,80$ & 0,977\\
\cline{1-2}
\cline{4-6}
3 & 15,0 & & 1,75 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=366,12x-2017,60$ & 0,985\\
\cline{1-2}
\cline{4-6}
4 & 20,0 & & 2,75 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=373,32x-2155,40$ & 0,958\\
\hline
5 & 7,5 & \multirow{4}{*}{0,05} & 1,00 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=-6049,10{{x}^{2}}+73903,00x-225290,00$ & 0,988\\
\cline{1-2}
\cline{4-6}
6 & 10,0 & & 1,25 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=119,00x-377,80$ & 0,914\\
\cline{1-2}
\cline{4-6}
7 & 15,0 & & 1,75 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=204,67x-936,46$ & 0,995\\
\cline{1-2}
\cline{4-6}
8 & 20,0 & & 2,75 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=222,28x-1130,8$ & 0,986\\
\hline
9 & 7,5 & \multirow{4}{*}{0,10} & 1,00 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=188,86x-718,04$ & 0,974\\
\cline{1-2}
\cline{4-6}
10 & 10,0 & & 1,25 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=95,86x-228,18$ & 0,986\\
\cline{1-2}
\cline{4-6}
11 & 15,0 & & 1,75 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=286,24x-1412,60$ & 0,972\\
\cline{1-2}
\cline{4-6}
12 & 20,0 & & 2,75 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=206,93x-1027,00$ & 0,950\\
\hline
13 & 7,5 & \multirow{4}{*}{0,15} & 1,00 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=127,64x-339,85$ & 0,998\\
\cline{1-2}
\cline{4-6}
14 & 10,0 & & 1,25 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=218,61x-953,18$ & 0,986\\
\cline{1-2}
\cline{4-6}
15 & 15,0 & & 1,75 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=219,71x-978,17$ & 0,979\\
\cline{1-2}
\cline{4-6}
16 & 20,0 & & 2,75 & ${{\bar{\sigma }}_{R\left( \upsilon \right)}}=181,96x-852,66$ & 0,992\\
\hline
\end{tabular}
\end{table}
References
1. Galin L.A. Contact problems of the theory of elasticity and viscoelasticity.-M.: Nauka, 1980.- 304 p. (In Russian)
2. Shtaerman I.Ya. Contact problem of elasticity theory. - M.-L.: Gostekhteorizdat, 1947 - 270 p. (In Russian)